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There is an extensive chemistry of N\as a bridging ligand with
u-1,1-N; (end-on),u-1,3-N; (end-to-end), and-1,1,3-N; (end-to-
end-on) modes of coordination as illustrated betow.
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Syntheses are typically based on ligand substitution reactions,

that is, eq 1P

H,O/EtOH

CuN; + excess Nah+ pyza
[Cu(pyza)f-1,1,3-N)],, (1)

where pyza= pyrazinecarboxamide.

We report here the synthesis of thel,3-N; Os dimer,
transtrans[(tpy)(Cl)208" (u-1,3-N,NgN)Os" (Cl)o(tpy)] ™ ([Os" —
N3—Os¢"]%), which contains a single N bridge. It was prepared
by the reaction betweanans[Os"!(tpy)(Cl)2(N)]PFs ([OsV'=N] ")
(tpy = 2,2:6',2"-terpyridine) and ammonia (Nflunder N in dry
CH3CN to give the [O%—N3—0Os<']~ precursor followed by air
oxidation to give [O4 —N3—0QOg"]*. The synthetic procedure is
remarkable because of the flexibility in introduci@N into the
resulting #-1,3-N; bridge and the complex for the rich mixed-
valence properties supported by the bridge.

The reaction with NH presumably occurs similarly to that with
secondary amingbut in this case, it occurs with [Js=N]* attack
on N; of an initial Os(IV)-hydrazido intermediate, eqs 2 and 3.

trans[0s” (tpy)(Cl),(N)] © + 2NH, —
trans[0s"” (tpy)(CI),(N,NsH,)] + NH," (2)

trans[0s” (tpy)(CI),(N)] " +
trans-[0s" (tpy)(Cl),(N,N;H,)] —
transtrans:[(tpy)(Cl),0s' (N,N;N,)Os' (Cl),(tpy)]” + 2H"
(3)

The overall reaction, eq 4, is remarkable in that there is a net

8-electron transfer from the three N atoms to two\{&N] ™ units
accompanied by the formation ofial,3-N;~ bridge.
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Table 1. Selected Infrared Data (1 cm™1) for
trans, trans-[(tpy)(Cl)20s"(u-1,3-NoNgN,)Os'"(Cl)2(tpy)]PFs and Its
15N-Labeled Analogues in Nujol Mulls

Vasym(Nai)v Avasym(NSjv
complex cmt cmt
[0 —1UN=14N=1N—-0d"]* (1) 2039 (1)- (2)=30
[Os! —IAN=15N=14N—-O4d"]* (2) 2009 (2)- (3)=32
[Os! —15N=1N=15N—-O4d"]* (3) 1977 (1)- (3)=62
[Os! —15N=15N=15N—-O4d"]* (4) 1944 (1)— (4)=95

vi . CH,CN
2trans[Os” (tpy)(CI),(N)] " + 2NH; ——
transtrans-NH,[(tpy)(CI),0s' (N,N;N,)Os' (CI),(tpy)] +
2H" (4)
The [0d—N3—04d']~ product is reducing and air sensitive. In
the presence of air, it rapidly undergoes air oxidation to thé'[Os

N3—O4"]* analoguetranstrans{(tpy)(Cl),09" (u-1,3-Ns)Od" (Cl)-
(tpy)]™, eq 5, which was isolated and characterized as its Bédt.

transtrans-[(tpy)(C1),0s' (N,N;N,)Os' (Cl),(tpy)] ™ +

CH,CN

Y,0,+ HO——
transtrans{(tpy)(Cl),0s" (N,N;N,)Os" (C),(tpy)] " +
20H (5)
Validation of the mechanism in egs 2 and 3 comes from the
results of!®N labeling. When [O¥=!5N]" is allowed to react with
14NHjs, the oxidized product is [5—15N=1N=15N-0d"]*, eq
6. Similarly, the reaction between [@==1“N]* and >NH; gives
[O8! —1N=1N=14N—-04d"]*, eq 7, and the fullyu-1,3'N3~
bridged Os product, [J5-15N=15N=15N—-0O¢"]*, is formed from
the reaction between [#s=15N]* and>NHg, eq 8.
2[08"="N]* + 2"NH, + 7,0, —
[0s" N, ="N;="N,~0s"]" + H,0 + “NH," (6)

2[0s"="N]" + 2"°NH, + 1,0, —~

[08" N, ="N;/="N,~0s"]" + H,0 + *NH," (7)
2[08"="N]* + 2"*NH, + 1,0, —

[0s" —**N,=""N,=""N,~0s"]" + H,0 + **NH," (8)

The formulation of the threéN-labeled forms of [O4—N3—
0d"]* is supported by the IR data in Table 1 which summarizes
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Figure 1. Cyclic voltammogram ofranstrans[(tpy)(CI)208" (u-1,3-Ng)-
Os"(Cl)(tpy)]PFs in 0.2 M BwNPFR/CH3CN, V versus SSCE.
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Table 2. Cyclic Voltammetric Data for
trans, trans-[(tpy)(Cl)20s'"'(N3)Os"(Cl),(tpy)]PFe in 0.2 M

BusNPFe/CH3CN

waves couples Ey, (V vs SSCE) AEj; (V vs SSCE)
A V-=VIV-IV >2.10 (A-B) > 0.71
B V—=IVIIV =IV +1.40
C IV=IVIIV =1l +1.28 (C-D)=0.52
D IV =11 =1l +0.76
E =1 =i +0.07 (E=F)=0.19
F == -0.12

shifts invasyr{N3™) with 5N substituted fo“N. As can be seen by
the band energies in entries 1 and 2, substitutiod®Nfin the
B-position results in a shift of 30 cm which is in agreement with
the value predicted by Hook's Law approximation. On the basis
of the band energies from entries 1 and 3, the introduction of two
15N's in the a-positions gives rise to the expected shift 960
cm 1 (62 cmY). From entries 1 and 4, the replacement of all three
15N's in the two a-positions ands-position causes a shift of 95
cm 1, consistent with the fully labeled NN bridged ligand.

The proposed-1,3-N;~ bridged structure is confirmed ByN
NMR measurements in deuterated DMSO on'[O$N=1N=
I5N—-0O4"]PFs.4 The singlet resonance for [Bs=15N]* at 1185 ppm
becomes a doublet at400.0 ppm ¥J(**N—1N) = 2.4 Hz) in
[0S 15N =15Nz=1N,—Os"]* due to the 2'°N,’s. A triplet at
—350.3 ppm can be assigned*d; (QJ(*N—15N) = 2.4 and 2.4
Hz). The [SN=15N=15N]~ one-bonccoupling constants of 2.4 Hz
are much smaller than those for oth€N-labeled azide com-
pounds’@¢ They span the range from 5.9 Hz for [N 3]z in
CeDsCD5% to 24.0 Hz for CIN (in CD,Cl,).52 This is the first
example of a transition metal complex containing the fully labeled
15N;3 ligand.

Formulation of [O¥ —N3—0sd"]* as a symmetrical, diamagnetic
d>—d° dimer with retention of the trans-geometry is consistent with
its spectroscopic properties. In ftd NMR spectrum, the expected
aromatic resonances for tpy appear from 8.35 to 7.20 ppm, in pattern
similar to those for the paretrans[Os"! (tpy)(Cl)s(N)]PFs complex.

The diamagnetism shows that there is strong magnetic coupling
across the bridge. The pattern of bands in the visible With =

466, 556, 642, and 720 nm in GEN is analogous to that of bands
at 455, 485, 540, and 608 nm foans[Os" (tpy)(Cl)2(CH:CN)]*.

A cyclic voltammogram of [O4—N3;—0g"]* in 0.2 M BuNPR/
CH3CN is shown in Figure 1. It reveals the appearance of a series
of chemically reversible waves from0.12 to 1.40 V arising from
couples that range from ®s0sV/08V—-0sV at 1.40 V to O¥ —
04d'/0d'-0¢" at —0.12 V, versus SSCE (SSGE0.236 V versus
NHE or E;o(FeCp°*) = 0.39 V versus SSCE). The peak-to-peak
splitting values between the waves adjacent to the three mixed-
valence forms are summarized in Table 2. The/-©8s'/0s’—
08V couple is beyond the solvent limit with;, > 2.10 V.

We have not yet investigated the spectroscopic properties of the
three mixed-valence forms, but the variationsAE;,, values in
Table 2 point to increasingly enhancedHMl coupling in the higher
oxidation state$§~’

There is also a reactivity chemistry at thel,3 N;~ bridged
ligand. When [O% —N3;—Os<"]* was heated, it undergoes a {2
3] cycloaddition reaction with CKCN followed by a solvolysis to
give trans [0S (tpy) (Cl)o(5-MeCNy)]82 and trans-[Os' (tpy)(Cl),-
(NCCHy)]*® eq 9.

transtrans[(tpy)(CI),08" (N=N=N)0s" (CI),(tpy)]*
60°C, CH,CN

trans[0s" (tpy)(Cl),(5-MeCN,)] +
trans{0s" (tpy)(C,(NCCH,)] " (9)

or several days

The former was isolated and structurally characterized, Supporting
Information Figure 1. It contains the Ms5-Me-tetrazolate ring
structure which was reported earlier as the product of the reaction
betweertrans[Os' (tpy)(Cl)2(NCCHz)] and N;~ in the presence of
airf2egs 10 and 11.

trans[0s' (tpy)(CI),(NCCH,)] + N~
trans[Os' (tpy)(Cl),(5-MeCN,)]~ (10)

trans-[Os' (tpy)(Cl),(5-MeCN,)] 2
trans[0s" (tpy)(Cl),(5-MeCN,)] (11)
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